Construction of Non-alternating Knots

نویسنده

  • SEBASTIAN BAADER
چکیده

We investigate the behaviour of Rasmussen’s invariant s under the sharp operation on knots and obtain a lower bound for the sharp unknotting number. This bound leads us to an interesting move that transforms arbitrary knots into non-alternating knots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Restrictions to the Values of the Jones Polynomial

We prove a relation in the algebra of the Jones Vassiliev invariants, giving a new restriction to the values of the Jones polynomial on knots, and the non-existence of another family of such relations. We prove, that Jones polynomials of positive knots have non-negative minimal degree and extend this result to k-almost positive knots. We prove that if a positive knot is alternating, then all it...

متن کامل

Non-triviality of Generalized Alternating Knots

In this article, we consider alternating knots on a closed surface in the 3-sphere, and show that these are not parallel to any closed surface disjoint from the prescribed one.

متن کامل

Polyhedral Knots and Links

This paper contains a survey of different methods for generating knots and links based on geometric polyhedra, suitable for applications in chemistry, biology, architecture, sculpture (or jewelry). We describe several ways of obtaining 4-valent polyhedral graphs and their corresponding knots and links from geometrical polyhedra: midedge construction, cross-curve and double-line covering, and ed...

متن کامل

A volume-ish theorem for the Jones polynomial of alternating knots

The Volume conjecture claims that the hyperbolic Volume of a knot is determined by the colored Jones polynomial. The purpose of this article is to show a Volume-ish theorem for alternating knots in terms of the Jones polynomial, rather than the colored Jones polynomial: The ratio of the Volume and certain sums of coefficients of the Jones polynomial is bounded from above and from below by const...

متن کامل

Knot Floer Homology of (1, 1)-knots

We present a combinatorial method for a calculation of knot Floer homology with Z-coefficient of (1, 1)-knots, and then demonstrate it for non-alternating (1, 1)-knots with ten crossings and the pretzel knots of type (−2, m, n). Our calculations determine the unknotting numbers and 4-genera of the pretzel knots of this type.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006